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An N-species Lotka-\olterra stochastic model of a symbiotic ecological system with the Verhulst self-
regulation mechanism is considered. The effect of fluctuating environment on the carrying capacity of a
population is modeled as the colored three-level Markovtaohotomou$ noise. In the framework of the
mean-field theory an explicit self-consistency equation for stationary states is presented. Stability and instabil-
ity conditions and colored-noise-induced discontinuous transiticetastrophic shifjsin the model are inves-
tigated. In some cases the mean field exhibits hysteresis as a function of the noise parameters. It is shown that
the occurrence of catastrophic shifts can be controlled by noise parameters, such as correlation time, amplitude,
and flatness. The dependence of the critical coupling strengths on the noise parameters is found and illustrated
by phase diagrams. Implications of the results on some modifications of the model are discussed.
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I. INTRODUCTION variability in important environmental parameters, such as
temperature and rainfall, have widely recognized impacts on
Modeling of the dynamics of interacting species is centralnatural populations of plants and animals. It is generally ac-
in ecological theory, and there is a vast literature describingnowledged that an important characteristic of environmen-
deterministic and stochastic models for such interactiors  tal variability, or noise, is its correlation timgolor). Theo-
a reference survey s¢é]). Usually the process is so com- retical investigations suggest that population dynamics is
plex that the dynamics of such webs of coevolving speciessensitive to noise coldrl0]. In spite of the obvious signifi-
especially in the case of a great number of interacting spezance of this circumstance, the role of colored noise that is
cies, can be successfully represented by means of a dynangiharacteristic to the changes of the environmental param-
cal system with stochastic elemefgs3]. eters, i.e., to the dynamics of ecosystems, has not been much
Ecological systems are usually assumed to smoothly reinvestigated.
spond to a gradual change of environmental parameters. Recently, noise-induced nonequilibrium transitiofes
However, studies have shown that the smooth change can beell as colored-noise-induced transitiorisn spatially ex-
interrupted by catastrophic shifts leading to a new state ofended nonlinear systems with multiplicative noise have been
the ecosystenid]. Furthermore, recent results exhibit exis- the topic of a number of physical investigatiofkl]. The
tence of alternative stability domains in different natural eco-initial motivation in this field has come from studies of phase
systems[4,5]. Such catastrophies have also been noted itransitions, in particular, from the discovery of a noise-
various theoretical models, assuming that the effective deteinduced reentrant second-order phase transition for an artifi-
ministic potential is multistabl¢l,4]. Typical examples are cial spatially extended mode[12]. Afterwards, noise-
models in which a prey-predator relationship doming@s induced nonequilibrium transitiongeither continuous or
and models of competing communitigg. discontinuous were found in systems of coupled oscillators
Motivated by the modeling of the idiotopic network in the [13] and also in some other systeifist,15. The fact that
immune system, which works as a regulation scheme foexternal multiplicative noise can induce multistability as well
idiotope recognitior{8], the authors of Refd.3,9] have in-  as discontinuous transitions in some complex systésas,
vestigated such requirements concerning the self-regulatioe.g., Ref[15]) inspired us to apply an analogous approach to
and interaction strength of a complex ecosystem, at whiclanalyze ecological models. It is of interest, both from theo-
the transition from stability to instability takes place. For retical and practical viewpoints, to know whether the cata-
example, if in a complex ecosystem, described by the genestrophic shifts sometimes occurring in ecosyst¢hs| can
alized Lotka-Volterra model with the Verhulst self-regulation be regarded as induced by multiplicative colored noise.
mechanism and with symbiotic interaction among species, In this paper we consider aN-species Lotka-\olterra
the interaction strength exceeds some critical value, an exnodel of an ecological system with the Verhulst self-
plosive increase in population occl. Note that the mod- regulation mechanism. The effect of fluctuating environment
els considered in Refd.3,9] have a uniquely determined on the growth of a population is modeled as trichotomous
steady state that does not depend on the initial conditionBuctuations of the carrying capacity. The trichotomous pro-
and, as a result, no catastrophic shifts occur. cess is a symmetric three-level stationary telegraph process
Physical environments, however, are rarely static, andharacterized by three parameters: amplitagle (0,), cor-
relation timer;e (0,.), and flatnessg e (1,0) [16,17. The
study is restricted to systems in which the interaction be-
*Electronic address: ain@tpu.ee tween species is symbiot[8,9]. As a first step to get some
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insight into the behavior of such complex ecosystems and ibreeding requirement and the crowding effect caused by

order to set a firm basis for further work, we addressed theompetition for resourcedl]. It is convenient to consider

model using a mean-field approach, focusing on the exact

stationary solutions of the self-consistency equation and on x\#

the colored-noise-induced nonequilibrium transitions. The 1- K;

purpose of this paper is to provide exact analytical results for

colored-noise-induced first-order-like phase transititis-  with =0, whereK; is the saturation point of population

continuous ongsover extended trichotomous noise param-density(the carrying capacilyand &; is the growth rate pa-

eters and interaction strengths. We show that the existengameter of theith species. Throughout this paper we take

and value of catastrophic shifts of the mean field can beg=1, which corresponds to the Verhulst model for self-

controlled by noise parameters. We have also succeeded fagulation[1,3]. The matrix 0i(i,j=1,... N) is the inter-

reaching exact conditions bring forth the discontinuous tranaction (or coupling matrix. If Jij>0 and J;;>0, theith

sitions. Since such transitions do not exist in systems withou§pecies is in a symbiotic relationship with spediese., the

noise, these are pure colored-noise effects. presence of other species increases the growth rate of each
A major virtue of the models with trichotomous noise is specieq3]. On the basis of Ref$3,9] we consider all spe-

that they constitute a case admitting exact analytical solucies equivalent, so that the characteristic parameters of the

tions for some nonlinear stochastic problems, such as colorestosystem are independent of the species, fe=,8, K;

noise-induced transitiongl7] and the reversals of noise- =K, Jij=JIN>0.

induced flow[16]. Furthermore, it is remarkable that for tri- Random interaction with the environmefdimate, dis-

chotomous noises, the flatness parameterontrary to cases ease, et¢.is taken into account by introducing a colored

of the Gaussian colored noisep€3) and symmetric di- noise inf;(X). From now on we shall use only fluctuations

chotomous noise¢=1), can be anything from 1 t®. This  of the carrying capacity; :

extra degree of freedom can prove useful at modeling actual

fluctuations. Although both dichotomous and trichotomous

noises may be too rough approximations of environmental K - rra, ()

fluctuations, the latter is more flexible, including all cases of '

dichotomous noises and, as such, revealing the essence of {{ferey= 5(1/K;) and the colored nois&;(t) is assumed to

peculiarities. . _ be a zero-mean trichotomous Markovian stochastic process
The structure of the paper is as follows. Section Il pre-[16 17]. A trichotomous process is a random stationary Mar-

sents the baSiC mOdel inVeStigated in '[hIS WOI‘k. In Sec. Il (’:kovian process that Consists Of jumps between three Va|ues

mean-field description of the model is given and the correz -4, 0,—a,. The jumps follow in time according to a Pois-

sponding exact self-consistency equation is found. Sectiogon process, while the values occur with the stationary prob-

IV analyzes the behavior of the self-consistently determinegpjjities

stationary mean field. In the phase space of the system pa-

rameters a coexistence region of two phases, a stationary Pd(ag)=Ps—ag)=q, P40)=1-2q. (4)

stable phase and an unstable one, and first-order-like phase

transitions are established. The dependence of the criticdlhe transition probabilities between the stai3)= *a,

coupling parameters on the noise parameters is investigatednd 0 can be obtained as follows:

In Sec. V, motivated by the knowledge of a possible hyster-

esis, we generalize the model introduced in Sec. Il by addind?(*=ag,t+ 7/0t)=P(—ag,t+ 7/ag,t)

an attractive term, which mimics a decrease of the carrying

capacity caused by competition between the populations. =P(ag,t+71—ap,t)

Section VI contains brief concluding remarks. Some calcula-

tions are delegated to the Appendix. =q(1—e™ "), (5)

Il MODEL P(Ot+ 7= ap,t)=(1—2q)(1—e" "),
Our starting point is theN-species generalized Lotka- >0, 0<q<1/2, v>0.
\olterra equation
The process is completely determined by E@s.and (5).

d The mean value oZ;(t) and the correlation function are
SXO=XO D)+ 3% ], (D
S S (Zi(1)=0, (6)

whereX;(t)(i=1, ... N) is the population density of thigh (Zi(1),Z;(t"))=6,;2qade "Vl

species at timé [clearly X;(t)=0]. The functionf;(X) de-

scribes the development of thih species without any inter- It can be seen that the switching ratés the reciprocal of the
action with other species. Typical mechanisms for self-noise correlation timey=1/7.. The flatness parameter

regulation in ecosystems are, for example, a territoriaproves to be a very simple expression of the probabidity
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(Z41) 1 with Eqg. (9) with Z=0 causes the species to approach the
= W: E (7 equilibrium statg X) = 8/(y—J), while when interaction be-

tween the species is greater than the saturation efféct (
Obviously, model(1) with Egs. (2) and (3) is biologically ~ >7), an instability occurs. That means that at a finite time

meaningful only if t., the mean valugX) grows to infinity and the system
becomes unstable. This transition tinhe depends on the
<. 8 parameters of the dynamical system and on the initial distri-
bution of the population§9].
IIl. MEAN-FIELD APPROXIMATION Next we consider the role of fluctuations due to a noise in

the population dynamics. As is evident from the determinis-
To proceed further with the analytical examination of tic behavior, asymptotic stationary state solutions exisk if
model (1) with the Verhulst self-regulation, mechanism, we < y—ay. If I>y+a,, then the system becomes unstable, as
assume thalN—cc. This means we are interested in the casen finite time the statistical averaggX(t)) would grow to
of infinitely many interacting species. Following Shiift8],  infinity. The casey+ay,>J>y—a, needs extra investiga-
one can reach the mean-field approximation by replacing thgon, as depending on the system parameters and on the ini-
site average (N)X;jX;(t) by the statistical average tial distribution of the populations, the system can either ad-
(X(t)) in Eq. (1). Hence, each stochastic differential equa-mit a stationary state or remain unstable.
tion (1), where Eqgs(2) and(3) are assumed, can be reduced  The behavior of a stationary system can be analytically
to an independent and identical stochastic differential equastudied by means of a standard mean-field theory procedure
tion of the form [11]. For a stationary state we can solve Et), taking as
the boundary condition that there is no probability current at
dz(tt) = X(D[ 8+ IX(1)) = X(O{y+Z(D)}]. 9) the bpunQary. This way we get_the sgationary probsabili'Fy dis-
tribution in thex space,P(x,r)==,P:(x), whereP;(x) is
the stationary probability density for the stated,,). After

The corresponding composite Fokker-Planck master equajite simple but voluminous calculations one can find
tion is

Pnlxl)__ 9 t +a,) Py(x.t P(x,r)= 2
at &X{x[r() X(y+an) JPa(x,} " x2aeB(qulr,[1—q]vir)
x—r)2\ (-awr-1
+2 UnmPm(X,t) (10 X 1__(’}/ 2) )
with r(t)=8+J(X(t)),P,(x,t) denoting the probability <F v(1-2q) »(1-2q)
density for the combined process, 4, ,t);n,m=1,2,33a, 2r 2r
=-—3ap,a,=0,a3=4ap, and )
1 v(l=—q)  (yx—r)
g-1 ¢ q M Dt S vl (12
U=yl 1-29 —2q 1-2q
q q q-1 whereB(\,x)=T"(\)T'(x)/T'(A+ k) is the beta functionk

is the hypergeometric functig@lso known as,F,), andI is
Many significant inequalities follow from Ed9) to charac- the gamma functiorisee also Refl17]). P(x,r) is normal-
terize the stationary states of the system. First, as for a stézed to restrictx within (r/[ y+ag],r/[ y—ag]). The self-
tionary casex;=r/(y—ag) andx,=r/(y+a,) are stable consistency equation for the Weiss mean-field approach,
fixed points of the deterministic equatiori8) with Z(t) whose solution yields the dependencé X} with the system
=—ay and Z(t) = a,, respectively, all trajectorieX(t) sat- parameters, is
isfy the following inequalities:

r/(y—ap)

(X)= fr xP(x,r)dx, (13

I(y+ap)

r

>X(t)> . 11
Py (t) Y+ ag (11)
wherer = 5§+ J(X).

Second, as the mean val(¥) must aiso satisfy inequalities For the sake of simplicity, we shall introduce the “order

(112), it follows that if I<y—ay, then 8/(y—J+ag) <(X)

<l(y—J—ag), if y+ag>J>y—ao then(X)>dl(y+a, Parameter

—J), and if J>y+a,, then no stationary state with a posi-

tive finite mean value can exist. m;:l<1> -y (14)
The deterministic behavior of E¢9), neglecting noisé&, 2y \ X[ 2(8+3(X))"

is investigated in Ref.9]. For different values of the param-
eter 5>0, whenJ<y, the deterministic potential associated By applying a scaling of the form
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FIG. 1. Solutions of the self-consistency equati@6) at differ-
ent coupling strengthd*. The flatness parameter equals 1/2q FIG. 2. Stationary mean fielth vs coupling strengtd* at dif-
=2, the amplitude parameter=0.8, and the growth raté* =1. ferent growth rates$* . The flatness parameter equals 2 and the
The mean-field solutions are given by the intersection points ofmplitude parametea=0.8. If J* exceeds the critical coupling
different curves with a straight line. Three typical cases are shownstrengthJ;=1/3, an unstable phase of the system occurarked
(1) there is just one stable solutigfull circle), (2) one stable so- by the bold line on theJ* axis). In the case of* =1 another

lution and one unstable solutidgampty circle appear, and3) there  critical coupling strengthJ,~0.3998 appears; the dashed line
are no solutions. marks unstable solutions of the self-consistency equatl®n If

the mean field lies on the upper branch close to the pgaiatslight
9
(15) growth of J* induces a catastrophic transition of the system to an

— * — 272
&t =26lv, J*=dly, a=agy", unstable state.

we get a dimensionless formulation of the self-consistency . )
equation(13). The corresponding equation is <& , another critical value of the coupling parameter 1
>J,>J; occurs. In the casd* >J, the system is unstable,

1 1 but atJ;<J* <J, there are two solutions. The bigger one
& m=1-J33F, 15.2qmmm+ > a|=g(m), (16  (m,) is stable and the smaller onsg<my) is unstablgsee
the Appendix.
where 5F, is the hypergeometric function. Figure 2 shows different solutions of the self-consistency

The behavior ofn at different asymptotics and the condi- €duation(16) for the mean fieldn as a function of the cou-

tions of occurrence of the stationary state will be considered!ing constantJ* and the growth rate parametet . Exis-
in Sec. IV. tence of an unstable solutidfrig. 2, lower branch of curve

5*=1) indicates that there is a coexistence regibrs J*
<J,, where two phases of the syste— a stationary stable
and an unstable one — are both possible. Notatmgxist-

It seems convenient to introduce graphical representatiorgncedoes not mean that the two phases are present simulta-
of Eq. (16) to have a better understanding for the occurrencéeously, however, either is possible depending on the initial
of this or that solution. Figure 1 shows a typical example ofdistribution. In the Appendix we show that in the cake
such representations. All self-consistently determined values J; an unstable phase really exists. The situation described
of mare given by the intersection points of the two curves inrepresents a typical case of first-order phase transitions. If the
Fig. 1 presenting the right-and left-hand sides of Euf).  value of the “order parameterih (describing the stationary
We can see that under conditié) the functiong(m) in Eq.  state of the system &t* <J, close to the poind,) is differ-

(16) increases monotonically frong(0)=1—J*/J; to  entfrom zero, a slight growth of the coupling parameter may
g(»)=1-J* asmincreases. The characteristic coupling pa-bring it beyond the bifurcation poirdt, and induce a discon-

IV. RESULTS

rameterJ, takes a remarkably simple form tinuous transition to the unstable state of the system.
Figure 3 shows a phase diagram in thie-6* plane at
l1-«a a=0.8 andg=0.25. The dashed region in the figure corre-
Jl:m' 17) sponds to the coexistence region of two phasesdAsn-

creases, the multiphase region narrows down and disappears
The following three characteristic regions can be dis-at the value of the growth rate parame&r=2.68852. It

cerned for the coupling paramet#t (see Fig. 1 should be noted that the critical coupling paramétecan be
(i) There is just one solution of Eq16) if J*<J;, the described by an exact analytical formyqg. (17)], but for
solution is stable. J, there is no such a formula. The latter can be evaluated

(i) There is no solution ifi* > 1, the system is unstable, from Eg. (16) by numerical methods or by using approxi-
as in finite time the statistical avera@¥(t)) grows to infin- mate equations. From E@16) a monotonic dependence of

ity. J, on &* follows: if &* increases from O taS; , thenJ,
(iii ) In the case ofl;<J* <1 there are two possible situ- decreases from 1 td,.
ations in the long time limit. There is an upper lindif for It is somewhat surprising that the critical growth rate pa-

the growth rate paramete?*, at greater values of which rameters; can be exactly expressed by elementary func-
there is no solution and the system is unstable. Fbr tions.
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FIG. 4. The critical growth rateS; vs the noise parametey
€ (0,0.5) for some values of the noise amplitude paramet&ote

=0.8, q=0.25. The stable phase, unstable phase, and the coexisf- pell-shaped extremum @ (q) at a>a,~0.63301. [fa<a,,

ence region of two phases are marked®\J, and SU, respectively.
The critical growth rate parameter & ~2.6885 and the critical
coupling strength ig,;=1/3.

Equation(16) shows that the critical coupling parameter

J, is given by the system of transcendental equations

5*m:1_\]2 3F2, (18)

where the hypergeometric functigf, is the same as in Eq.
(16). At the critical points* = 5 , whereJ,=J; andm=0
holds, from Eqs(18) the following solution can be obtained:

S=—3

d
Wn3':2

m=0

then &% (q) increases monotonically agincreases.

E( -

2a
As the noise amplitude> « increasesy,,, decreases mono-
tonically from 1/2 to zero. In the case of a large amplitude
a~1 one can find from Eqgs(19) and (20) that & (qm)

~28,. It means that in the case af>a, the value of the
critical parametes; induced by a trichotomous noise can up

to twice exceed the valué. of the parametes} induced by
a dichotomous noiseg= 1/2) of the same amplitude. Nota-
bly, in the case otr< ., the parametes; of trichotomous
noise is always less than the corresponding parandetef a
dichotomous noise.

In Fig. 5 we have plotted the width of the coexistence
region of two phase3,— J; as a function of the parameter
It can be seen that, #> «, then the functional dependence

¢
In(1—a)

xﬂ—a). (20)

Om=

From this we can easily obtain an expression for the criticaPf J2—J1 on the parametey is of a bell-shaped form that is

growth rate parameter

s 2

cT1-(1-2q)a

(1+ \E)l—(l—Zq)\’E
(1_ \/E)1+(1—2q)v‘3"

(19

It is remarkable that in the case of fixed valuesqahe
critical parameters; increases monotonically from zero to
infinity if the noise amplitudex e (0,1) increases. We can
also consider the solutio(l9) as a function of the flatness
parametekp = 1/2q. The typical forms of the graph af} (q)

are represented in Fig. 4. There is a lower limit for the noise

amplitude @,~0.63301, below whicha<a.,d:(q) in-
creases monotonically. B>« , then for increasing values
of g, the critical growth rate starts from zero, growing to
maximum at a certain valug,, of g, and 8 approaches the
value

1+Ja
1-Va

as q—1/2. The parameteq,, at which the critical growth
rate 5; is maximized can be given the form

Be=+aln

associated with the behavior 6f (q).

In the vicinity of the critical points* ~ 5 ,6* <45y , the
values ofJ, and the “order parameterin(J,) can be esti-
mated by the following equations:

]6( i

0.06 |

(1

0.04 ¢ (<)

0.0zt (3

0

01 0.2 03 04

0 05 ¢

FIG. 5. The width of the phase coexistence regonl,— J; vs
noise parameteq e (0,0.5) at three typical cases. The curégs-
(3) correspond to the following parameters: §t)=0.5a4=0.6,8;
=1; (2)6*=3,4=0.98,=10; (3)§* =3.8¢=0.98;=100. At
fixed coupling strength)* >1—«, the discontinuous transitions
caused by changes of the noise flatness parametet/2q can
occur only within the finite intervals of:(1)1<¢<8.803,(2)1
<<8.606,(3)1.283< ¢<4.250.
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(5s—&)? (5 = 5%) m
o=+ ———, m(Jy)~—, 21
It — (3~ —5— (21)
04
where
03
d? el1 1 oam: 1 02 )’F
pi= d—mz 3Fo ,E, qm,m,m+ E,a B ’/, *
m=0 4 L.-olod
For a<1 (i.e., if the noise amplitude is smallwe can do G ___
with the following approximate equations: 03 036 038 04 042 J*

FIG. 6. The mean fieldm vs coupling constantl* at q
Se~4qa, p=~45;. =0.25¢=0.87,=0.5, ande=10"* with time scalingé=1. Solid
and dashed lines are stable and unstable solutions of the self-
At large amplitudes, + @<2q, the parameters; andp consistency equatiot24), respectively. The system shows hyster-
can be given agg ~2(1-q)|In(1—a)|, p%é‘:zl\]l_ Since the esis — discontinuous transitions appear at the bifurcation p&ints
coupling-induced two-phase coexistence region does not e@ndG.
ist in a system without noise, it is a pure colored-noise effect _ ) ) o
[see also Eq(19)]. From Eq.(15) we can find that there is a The corresponding stationary self-consistency equation is
coexistence region if the noise correlation time satisfies

the condition 7.< 57 /28. Evidently, if the system is in a J*2m 1

stationary stable phase in the coexistence region, then a per- stm=1— 3|:2( 1-,2gm;m,m

turbation of the noise parameters can turn the system to the m(J* — de) + €/27, 2

unstable phase. It is remarkable that variations of the noise A

correlation time can induce only abrupt transitions between n E am-J (24)

the stable and unstable states of the system. In contrast, 2 [m(J* — Se) + el27,1?)

— . . . [
variations of the noise amplitudend the flatnegscan in-
duce both discontinuous and continuous transitions. where the parametes® ,J* ,«, andm are given by Eqs(14)
and (15). Differently from what is presented in Sec. lll, the

V. HYSTERESIS stationary states at the conditions relevant in biology (

>0,J>0,y>0,e>0,0<1, and X;=0) always exist, i.e.,
In eco|ogica| contexts unstable states of a system Cathere is no unstable state. If noise is absent, the stationary
variously be interpreted: extinction of populations, presencétate is monostable and
of additional interaction between species that the model has
not taken into account, etc. In order to investigate the pres- 1
ence of a possible hysteresis induced by a noise we modify (X)y==—(I* —1)%+4es5+I* —1].
our model so that the unstable state of the system is replaced 2ey

by a new stable state. We take into account that in case there . ) . .
is a competition for a common resource, such as food ol Fig- 6 the mean fieldn is shown as a function of the

living space, the growth of any expanding population mustcoupling intensityd* satisfying the self-consistency equation
eventually be limited by the shortage of resources. Relyindg24 at 7c=0.56=1,a=0.89=0.25, ande=0.0001. A hys-

on Ref.[19], we introduce an adaptation in the above modell€"€siS for the mean field appears and the discontinuous tran-
[Egs. (1)~(3)] by means of the dependence of the carryingSitiO” is doubly unidirectional. There are two critical values

capacityK; on the numbers of individuals in the populations: for the coupling intensityJ;=0.3700 andJ,=0.4014 at
which the abrupt transitions occur. If the adaptation factor is
5 rather small € is much less than the other parameters char-
K €Y acteristic of the systenthe critical parameters can be esti-

<N 2 KO, 22 mated as

where the adaptation facter>0 is assumed independent of ~ ~

the species, i.e., the populations adapt themselves with re- Ji=Jd1, Jo=Js.
spect to the total number of individuals of all populations. ) ) )
The mean-field approximation scheme presented in Sec. Il Hysteresis can also be present in case any noise param-

can also be applied in this case by replacing the parameter 8t€T, @.d, or 7c, is chosen as the control parameter. For
in Eq. (9) by the following one: example, in Fig. 7 the hysteresis is exposed for the mean

field m if the noise correlation time-. is considered as the
control parameter. It can be seen that a jump from a state
¥* =y+ ey¥X). (23)  with a bigger number of individuals to that with a lesser
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m l mathematical results of Sec. Ill and IV are valid, just the
03 f parameterNSy and o must b~e replaced by* =7/(1—a*)
| and o* =(_ya0)2<1 (where y= _b‘/K) in the respective for-
0.2 mulas. It is remarkable that, differently from what could be
; ! seen in Sec. |V, the rescaled critical coupling constant
01 . _T, - does not depend on the parameters of the noise and retains
PP | the value it has if noise is abseft,=J.="y. The region of
o Qrg the coexistence of two phases is determined by the condi-
02 04 06 08 e tions y<J<J,<7v/(1-a*),7.<./28. This means that in

FIG. 7. Plot of the mean fieldn as a function of the noise [N Presence of noise, a symbiotic ecological system can
correlation timer, at q=0.25x=0.8J* =0.39 with time scaling have a stable stationary state also if the coupling parameter

5=0.7 ande=10"*. The solid and dashed lines correspond to theconsiderably exceeds the critical value of the coupling con-

stable and unstable solutions of Eg4), respectively. Hysteresis of stantJ.="y characteristic of the deterministic case. Notably,
the mean field appears. The arrows show the direction of then the cases considered in Secs. Ill and IV the values of the

change. The states in the dashed middle section lie on the bordgg,,hling parameter for stationary states are always less than
between the basin of attraction of the two alternative stable state

on the upper and lower branches. ¢

In Sec. V we have modified the model by including a term
number occurs at smaller correlation times than oppositd'at mimics the decrease of the carrying capacity caused by

jumps. As was mentioned before, hysteresis appears at the competiFion of populations for common resources. In this

change of the noise amplitude. In these cases the jump €RS€ .there is nolunstable state of the system gnd the mean

bigger numbers of individuals occurs at larger amp"tudegleld is characterized by one or two stable stationary solu-

than the opposite jumps. Therefore a decrease of the noid®ns for every value of the coupling parametét=0.

amplitude(or of the correlation timecan under certain con- Moreover, hystereses for the mean field and related discon-

ditions cause a catastrophic fall in the size of the populationtinuous transitions can sometimes be found as functions of
the noise parameters as well as of the coupling constants.

VI. CONCLUDING REMARKS This is because colored noise can induce bistability of the

ecosystem.

The presence of colored noise has a profound effect on an Qur major result is that, in the case of ecological systems
ecosystem described by Eq$)—(3), rearranging its param- with a symbiotic interaction between the species, random
eter space so that in a certain region the system can be eithigferaction with the environment can cause discontinuous
in the unstable phase or in the stationary stable one anglansitions in ecosystems, even if the system is monostable in
abrupt(first-order-likg transitions occur. Since the coupling- the absence of noise. Such transitions can appear in two
induced two-phase coexistence region does not exist in thgays (both of which may depend on human activijieBirst,
system without noise, it is a pure colored-noise effect. Theyprupt transitions can be caused by changes of control pa-
results indicate that the effect of noise is not merely revameters, for example, the variations of the coupling constant
stricted to the shift of the critical value of the interaction or the noise correlation timésee Figs. 2 and)7 Second,
strength, but the whole nature of the transition changes. Nosome environmental fluctuations can affect the state directly,
tably, the coexistence region exists only at bounded values @br example, by wiping out parts of the populatiof. If
the correlation timer.< & /26 [see Eq(19)]. The phenom-  there are alternative stable states, rather severe fluctuations
enon is robust enough to survive a modification of the noisenay shift the system into a basin of attraction of another
as well as the coupling mechanism. Calculations analogoustate(Fig. 7). Such catastrophies were also noted in different
to those given in the Appendix show that in the case of acological models assuming that the deterministic potential
symmetric zero-mean exponentially correlated noj@€t  in the absence of noise is multistalpe6]. We would like to
+17),Z(t))= o exp(—v7), if the dispersion is small enough emphasize that these models are qualitatively different from
(0<9?), all the results from Sec. IV are valid. In this case these considered in our work. In the latter the deterministic
a(a<1) must be replaced by/(2q7?) in the equations of potential is monostable and bistability is induced by the com-
Sec. IV. For example, the noise can also be a Gaussian sthined effects of multiplicative colored noise and symbiotic
tionary process. Evidently, a choice of a Gaussian noise imeoupling (Sec. V).
plies the possibility of obtaining negative valuesybr the The systems considered consist of infinite number of glo-
carrying capacity. Such a case has no biological meaning bulbally coupled species. When the number of species is finite,
as the width of the Gaussian distribution is small enough, thas is true for more realistic ecosystems, the features of the
small negative tail does not affect our results, if restricted tasystem can be differerisee, e.g.[14]). Thus, the case of a
the first order ina/ y2. finite number of interacting populations remains to be stud-

Another interesting example admitting an exact analyticaied. It should be considered whether pure colored-noise-
self-consistency equation is the case where the carrying cénduced catastrophic shifts can play some role in natural eco-
pacity K; fluctuates according t&; /5= (K/8)+Z; [cf. Eq.  systems(or in metapopulationsdominated by a symbiotic
(3)]. If Z; means a dichotomous process=(1/2), then all  relationship or by cooperation between specisse also
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Ref.[20]). Undoubtedly, ultimate verification of these amaz-

ing phenomena lies with experimentalists—ecologists.
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APPENDIX

Since the self-consistency equatittt) for m yields, in

and the symbol)), denotes an average calculated over the
realizations of the procesg(t). Proceeding analogously
from Eq. (A1) the formulas for both(X?(t)), and
(Z(t)X?(t))o can be found.

From Eqg.(9) follows

general, more than one solution for the system and in addi-

tion the system can have an unstable state thatE).does

not include, it is essential to ascertain which of the stationary d{X)o = (X)ol 8+ IX) = (X)o[ y+ 2qax0y2{xoyG(t)

states is realized in the course of time and to consider the
transitions between stable and unstable states. For this pur-
pose we investigate the behavior @fX(t))/dt in the long

time regime {— < for the stability region and—t, for the

instability region, wheré, is the stability-instability transi-
tion time). For the sake of simplicity we confine ourselves to

the case where the noise amplitude is sma 1.
The solution of Eq(9) is given by

t . -1
1+x0f eMI[ y+Z(t*)]dt*

to

X(t)=x,eM®

(AL)
with
Xo=X(to)

and
t
M(t)= f [S5+J(X(t*))]dt*.
to

Taking into account that
(Z(1),Z(t"))=2gy*a exp —v|t—t])

and confining ourselves to the terms proportionaktowe
get

(X(1))o=%0e" [ 1+ 20352 ¥*G(1)]

-1

t *
X 1+Xoyj eM)dt* | +0(a?),

to

where

dt

—R(t)}]}+0(a?), (A2)

where

R(t)=2e "

t -1t
1+x0yf dt*eM(‘*)) fdt*eM(‘*)”‘*.
t

to 0

In Eqg. (A2) the following long time regime approximation
can be applied:

IX)+ 65

RIO=X0YG(0~ L e s a(x))

After averaging Eq(A2) over the initial distribution we can
reach in the long time regime the following asymptotic equa-
tion:

d(x)  ¥¥X)
dt  v+86+I(X)

[J*(J* —JI)(X)2+ %[(25+ ) J*

S(v+6) } (A3)

—v—383.{X)+ v

whereJ*=J/y andJ,;=1-2qa.

Following the sign and zeros of the expression in the
braces we can single out the following alternatives.

(i) For J* <J; there is just one stationary stable solution
of Eqg. (A3) — the average size of the species saturates at this
solution.

(i) For J*>J4, if (X) is sufficiently large, unlimited
growth of the mean valuéx) occurs.

(i) If J*>3,=3;+(V2qa—67)% 7.6<2qa or if
J*>J,,7.6>2qa, then the system is unstable and the mean
value(X) grows to infinity.

(iv) In the case ofl;<J* <J, and7.6<2qa there occur
two stationary solutions and a solution that grows to infinity
in time. The bigger stationary solution is unstable and the
smaller one is stable.
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