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Trichotomous-noise-induced catastrophic shifts in symbiotic ecosystems
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An N-species Lotka-Volterra stochastic model of a symbiotic ecological system with the Verhulst self-
regulation mechanism is considered. The effect of fluctuating environment on the carrying capacity of a
population is modeled as the colored three-level Markovian~trichotomous! noise. In the framework of the
mean-field theory an explicit self-consistency equation for stationary states is presented. Stability and instabil-
ity conditions and colored-noise-induced discontinuous transitions~catastrophic shifts! in the model are inves-
tigated. In some cases the mean field exhibits hysteresis as a function of the noise parameters. It is shown that
the occurrence of catastrophic shifts can be controlled by noise parameters, such as correlation time, amplitude,
and flatness. The dependence of the critical coupling strengths on the noise parameters is found and illustrated
by phase diagrams. Implications of the results on some modifications of the model are discussed.
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I. INTRODUCTION

Modeling of the dynamics of interacting species is cen
in ecological theory, and there is a vast literature describ
deterministic and stochastic models for such interactions~for
a reference survey see@1#!. Usually the process is so com
plex that the dynamics of such webs of coevolving spec
especially in the case of a great number of interacting s
cies, can be successfully represented by means of a dyn
cal system with stochastic elements@2,3#.

Ecological systems are usually assumed to smoothly
spond to a gradual change of environmental parame
However, studies have shown that the smooth change ca
interrupted by catastrophic shifts leading to a new state
the ecosystem@4#. Furthermore, recent results exhibit exi
tence of alternative stability domains in different natural e
systems@4,5#. Such catastrophies have also been noted
various theoretical models, assuming that the effective de
ministic potential is multistable@1,4#. Typical examples are
models in which a prey-predator relationship dominates@6#
and models of competing communities@7#.

Motivated by the modeling of the idiotopic network in th
immune system, which works as a regulation scheme
idiotope recognition@8#, the authors of Refs.@3,9# have in-
vestigated such requirements concerning the self-regula
and interaction strength of a complex ecosystem, at wh
the transition from stability to instability takes place. F
example, if in a complex ecosystem, described by the ge
alized Lotka-Volterra model with the Verhulst self-regulatio
mechanism and with symbiotic interaction among spec
the interaction strength exceeds some critical value, an
plosive increase in population occurs@9#. Note that the mod-
els considered in Refs.@3,9# have a uniquely determine
steady state that does not depend on the initial condit
and, as a result, no catastrophic shifts occur.

Physical environments, however, are rarely static, a
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variability in important environmental parameters, such
temperature and rainfall, have widely recognized impacts
natural populations of plants and animals. It is generally
knowledged that an important characteristic of environm
tal variability, or noise, is its correlation time~color!. Theo-
retical investigations suggest that population dynamics
sensitive to noise color@10#. In spite of the obvious signifi-
cance of this circumstance, the role of colored noise tha
characteristic to the changes of the environmental par
eters, i.e., to the dynamics of ecosystems, has not been m
investigated.

Recently, noise-induced nonequilibrium transitions~as
well as colored-noise-induced transitions! in spatially ex-
tended nonlinear systems with multiplicative noise have b
the topic of a number of physical investigations@11#. The
initial motivation in this field has come from studies of pha
transitions, in particular, from the discovery of a nois
induced reentrant second-order phase transition for an a
cial spatially extended model@12#. Afterwards, noise-
induced nonequilibrium transitions~either continuous or
discontinuous! were found in systems of coupled oscillato
@13# and also in some other systems@14,15#. The fact that
external multiplicative noise can induce multistability as w
as discontinuous transitions in some complex systems~see,
e.g., Ref.@15#! inspired us to apply an analogous approach
analyze ecological models. It is of interest, both from the
retical and practical viewpoints, to know whether the ca
strophic shifts sometimes occurring in ecosystems@4,5# can
be regarded as induced by multiplicative colored noise.

In this paper we consider anN-species Lotka-Volterra
model of an ecological system with the Verhulst se
regulation mechanism. The effect of fluctuating environm
on the growth of a population is modeled as trichotomo
fluctuations of the carrying capacity. The trichotomous p
cess is a symmetric three-level stationary telegraph pro
characterized by three parameters: amplitudea0P(0,̀ ), cor-
relation timetcP(0,̀ ), and flatnesswP(1,̀ ) @16,17#. The
study is restricted to systems in which the interaction
tween species is symbiotic@3,9#. As a first step to get some
©2002 The American Physical Society08-1
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insight into the behavior of such complex ecosystems an
order to set a firm basis for further work, we addressed
model using a mean-field approach, focusing on the ex
stationary solutions of the self-consistency equation and
the colored-noise-induced nonequilibrium transitions. T
purpose of this paper is to provide exact analytical results
colored-noise-induced first-order-like phase transitions~dis-
continuous ones! over extended trichotomous noise para
eters and interaction strengths. We show that the existe
and value of catastrophic shifts of the mean field can
controlled by noise parameters. We have also succeede
reaching exact conditions bring forth the discontinuous tr
sitions. Since such transitions do not exist in systems with
noise, these are pure colored-noise effects.

A major virtue of the models with trichotomous noise
that they constitute a case admitting exact analytical s
tions for some nonlinear stochastic problems, such as col
noise-induced transitions@17# and the reversals of noise
induced flow@16#. Furthermore, it is remarkable that for tr
chotomous noises, the flatness parameterw, contrary to cases
of the Gaussian colored noise (w53) and symmetric di-
chotomous noise (w51), can be anything from 1 tò . This
extra degree of freedom can prove useful at modeling ac
fluctuations. Although both dichotomous and trichotomo
noises may be too rough approximations of environme
fluctuations, the latter is more flexible, including all cases
dichotomous noises and, as such, revealing the essence
peculiarities.

The structure of the paper is as follows. Section II p
sents the basic model investigated in this work. In Sec. I
mean-field description of the model is given and the cor
sponding exact self-consistency equation is found. Sec
IV analyzes the behavior of the self-consistently determin
stationary mean field. In the phase space of the system
rameters a coexistence region of two phases, a statio
stable phase and an unstable one, and first-order-like p
transitions are established. The dependence of the cri
coupling parameters on the noise parameters is investiga
In Sec. V, motivated by the knowledge of a possible hys
esis, we generalize the model introduced in Sec. II by add
an attractive term, which mimics a decrease of the carry
capacity caused by competition between the populatio
Section VI contains brief concluding remarks. Some calcu
tions are delegated to the Appendix.

II. MODEL

Our starting point is theN-species generalized Lotka
Volterra equation

d

dt
Xi~ t !5Xi~ t !F f i„Xi~ t !…1(

j Þ i
Ji j Xj~ t !G , ~1!

whereXi(t)( i 51, . . . ,N) is the population density of thei th
species at timet @clearly Xi(t)>0#. The functionf i(X) de-
scribes the development of thei th species without any inter
action with other species. Typical mechanisms for se
regulation in ecosystems are, for example, a territo
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breeding requirement and the crowding effect caused
competition for resources@1#. It is convenient to consider

f i~x!5d iF12S x

Ki
D bG ~2!

with b>0, whereKi is the saturation point of populatio
density~the carrying capacity! andd i is the growth rate pa-
rameter of thei th species. Throughout this paper we ta
b51, which corresponds to the Verhulst model for se
regulation@1,3#. The matrix (Ji j )( i , j 51, . . . ,N) is the inter-
action ~or coupling! matrix. If Ji j .0 and Jji .0, the i th
species is in a symbiotic relationship with speciesj, i.e., the
presence of other species increases the growth rate of
species@3#. On the basis of Refs.@3,9# we consider all spe-
cies equivalent, so that the characteristic parameters of
ecosystem are independent of the species, i.e.,d i5d, Ki
5K, Ji j 5J/N.0.

Random interaction with the environment~climate, dis-
ease, etc.! is taken into account by introducing a colore
noise in f i(X). From now on we shall use only fluctuation
of the carrying capacityKi :

d

Ki
5g1Zi~ t !, ~3!

whereg[d^1/Ki& and the colored noiseZi(t) is assumed to
be a zero-mean trichotomous Markovian stochastic proc
@16,17#. A trichotomous process is a random stationary M
kovian process that consists of jumps between three va
a5a0 ,0,2a0. The jumps follow in time according to a Pois
son process, while the values occur with the stationary pr
abilities

Ps~a0!5Ps~2a0!5q, Ps~0!5122q. ~4!

The transition probabilities between the statesZ(t)56a0
and 0 can be obtained as follows:

P~6a0 ,t1tu0,t !5P~2a0 ,t1tua0 ,t !

5P~a0 ,t1tu2a0 ,t !

5q~12e2nt!, ~5!

P~0,t1tu6a0 ,t !5~122q!~12e2nt!,

t.0, 0,q,1/2, n.0.

The process is completely determined by Eqs.~4! and ~5!.
The mean value ofZi(t) and the correlation function are

^Zi~ t !&50, ~6!

^Zi~ t !,Zj~ t8!&5d i j 2qa0
2e2nut2t8u.

It can be seen that the switching raten is the reciprocal of the
noise correlation time,n51/tc . The flatness parameterw
proves to be a very simple expression of the probabilityq:
8-2
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w5
^Z4~ t !&

^Z2~ t !&25
1

2q
. ~7!

Obviously, model~1! with Eqs. ~2! and ~3! is biologically
meaningful only if

a0,g. ~8!

III. MEAN-FIELD APPROXIMATION

To proceed further with the analytical examination
model ~1! with the Verhulst self-regulation, mechanism, w
assume thatN→`. This means we are interested in the ca
of infinitely many interacting species. Following Shiino@18#,
one can reach the mean-field approximation by replacing
site average (1/N)( j (Þ i )Xj (t) by the statistical averag
^X(t)& in Eq. ~1!. Hence, each stochastic differential equ
tion ~1!, where Eqs.~2! and~3! are assumed, can be reduc
to an independent and identical stochastic differential eq
tion of the form

dX~ t !

dt
5X~ t !@d1J^X~ t !&2X~ t !$g1Z~ t !%#. ~9!

The corresponding composite Fokker-Planck master eq
tion is

]Pn~x,t !

]t
52

]

]x
$x@r ~ t !2x~g1an!#Pn~x,t !%

1(
m

UnmPm~x,t ! ~10!

with r (t)[d1J^X(t)&,Pn(x,t) denoting the probability
density for the combined process (x,an ,t);n,m51,2,3;a1
[2a0 ,a2[0,a3[a0; and

U5nS q21 q q

122q 22q 122q

q q q21
D .

Many significant inequalities follow from Eq.~9! to charac-
terize the stationary states of the system. First, as for a
tionary case,x15r /(g2a0) and x25r /(g1a0) are stable
fixed points of the deterministic equations~9! with Z(t)
52a0 and Z(t)5a0, respectively, all trajectoriesX(t) sat-
isfy the following inequalities:

r

g2a0
.X~ t !.

r

g1a0
. ~11!

Second, as the mean value^X& must also satisfy inequalitie
~11!, it follows that if J,g2a0, then d/(g2J1a0),^X&
,d/(g2J2a0), if g1a0.J.g2a0, then^X&.d/(g1a0
2J), and if J.g1a0, then no stationary state with a pos
tive finite mean value can exist.

The deterministic behavior of Eq.~9!, neglecting noiseZ,
is investigated in Ref.@9#. For different values of the param
eterd.0, whenJ,g, the deterministic potential associate
05110
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with Eq. ~9! with Z50 causes the species to approach
equilibrium statê X&5d/(g2J), while when interaction be-
tween the species is greater than the saturation effecJ
.g), an instability occurs. That means that at a finite tim
tc , the mean valuêX& grows to infinity and the system
becomes unstable. This transition timetc depends on the
parameters of the dynamical system and on the initial dis
bution of the populations@9#.

Next we consider the role of fluctuations due to a noise
the population dynamics. As is evident from the determin
tic behavior, asymptotic stationary state solutions exist iJ
,g2a0. If J.g1a0, then the system becomes unstable,
in finite time the statistical averagêX(t)& would grow to
infinity. The caseg1a0.J.g2a0 needs extra investiga
tion, as depending on the system parameters and on the
tial distribution of the populations, the system can either
mit a stationary state or remain unstable.

The behavior of a stationary system can be analytica
studied by means of a standard mean-field theory proce
@11#. For a stationary state we can solve Eq.~10!, taking as
the boundary condition that there is no probability current
the boundary. This way we get the stationary probability d
tribution in thex space,P(x,r )5(nPn

s(x), wherePn
s(x) is

the stationary probability density for the state (x,an). After
quite simple but voluminous calculations one can find

P~x,r !5
r212n/r

x2a0B~qn/r ,@12q#n/r !

3S 12
~gx2r !2

a0
2x2 D (12q)n/r 21

3FS n~122q!

2r
,
n~122q!

2r

1
1

2
;
n~12q!

r
;12

~gx2r !2

a0
2x2 D , ~12!

whereB(l,k)[G(l)G(k)/G(l1k) is the beta function,F
is the hypergeometric function~also known as2F1), andG is
the gamma function~see also Ref.@17#!. P(x,r ) is normal-
ized to restrictx within (r /@g1a0#,r /@g2a0#). The self-
consistency equation for the Weiss mean-field approa
whose solution yields the dependence of^X& with the system
parameters, is

^X&5E
r /(g1a0)

r /(g2a0)

xP~x,r !dx, ~13!

wherer[d1J^X&.
For the sake of simplicity, we shall introduce the ‘‘ord

parameter’’

mª

n

2g K 1

XL 5
n

2~d1J^X&!
. ~14!

By applying a scaling of the form
8-3
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MANKIN, AINSAAR, HALJAS, AND REITER PHYSICAL REVIEW E 65 051108
d* 52d/n, J* 5J/g, a5a0
2/g2, ~15!

we get a dimensionless formulation of the self-consiste
equation~13!. The corresponding equation is

d* m512J3* F2S 1,
1

2
,2qm;m,m1

1

2
;a D5g~m!, ~16!

where 3F2 is the hypergeometric function.
The behavior ofm at different asymptotics and the cond

tions of occurrence of the stationary state will be conside
in Sec. IV.

IV. RESULTS

It seems convenient to introduce graphical representat
of Eq. ~16! to have a better understanding for the occurre
of this or that solution. Figure 1 shows a typical example
such representations. All self-consistently determined va
of m are given by the intersection points of the two curves
Fig. 1 presenting the right-and left-hand sides of Eq.~16!.
We can see that under condition~8! the functiong(m) in Eq.
~16! increases monotonically fromg(0)512J* /J1 to
g(`)512J* asm increases. The characteristic coupling p
rameterJ1 takes a remarkably simple form

J15
12a

12a~122q!
. ~17!

The following three characteristic regions can be d
cerned for the coupling parameterJ* ~see Fig. 1!.

~i! There is just one solution of Eq.~16! if J* ,J1, the
solution is stable.

~ii ! There is no solution ifJ* .1, the system is unstable
as in finite time the statistical average^X(t)& grows to infin-
ity.

~iii ! In the case ofJ1,J* ,1 there are two possible situ
ations in the long time limit. There is an upper limitdc* for
the growth rate parameterd* , at greater values of which
there is no solution and the system is unstable. Ford*

FIG. 1. Solutions of the self-consistency equation~16! at differ-
ent coupling strengthsJ* . The flatness parameter equalsw51/2q
52, the amplitude parametera50.8, and the growth rated* 51.
The mean-field solutions are given by the intersection points
different curves with a straight line. Three typical cases are sho
~1! there is just one stable solution~full circle!, ~2! one stable so-
lution and one unstable solution~empty circle! appear, and~3! there
are no solutions.
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,dc* , another critical value of the coupling parameter
.J2.J1 occurs. In the caseJ* .J2 the system is unstable
but at J1,J* ,J2 there are two solutions. The bigger on
(m1) is stable and the smaller one (m2,m1) is unstable~see
the Appendix!.

Figure 2 shows different solutions of the self-consisten
equation~16! for the mean fieldm as a function of the cou-
pling constantJ* and the growth rate parameterd* . Exis-
tence of an unstable solution~Fig. 2, lower branch of curve
d* 51) indicates that there is a coexistence region,J1,J*
,J2, where two phases of the system — a stationary stable
and an unstable one — are both possible. Notably,coexist-
encedoes not mean that the two phases are present sim
neously, however, either is possible depending on the in
distribution. In the Appendix we show that in the caseJ*
.J1 an unstable phase really exists. The situation descri
represents a typical case of first-order phase transitions. I
value of the ‘‘order parameter’’m ~describing the stationary
state of the system atJ* ,J2 close to the pointJ2) is differ-
ent from zero, a slight growth of the coupling parameter m
bring it beyond the bifurcation pointJ2 and induce a discon
tinuous transition to the unstable state of the system.

Figure 3 shows a phase diagram in theJ* -d* plane at
a50.8 andq50.25. The dashed region in the figure corr
sponds to the coexistence region of two phases. Asd* in-
creases, the multiphase region narrows down and disapp
at the value of the growth rate parameterdc* 52.688 52. It
should be noted that the critical coupling parameterJ1 can be
described by an exact analytical formula@Eq. ~17!#, but for
J2 there is no such a formula. The latter can be evalua
from Eq. ~16! by numerical methods or by using approx
mate equations. From Eq.~16! a monotonic dependence o
J2 on d* follows: if d* increases from 0 todc* , then J2

decreases from 1 toJ1.
It is somewhat surprising that the critical growth rate p

rameterdc* can be exactly expressed by elementary fu
tions.

f
n:

FIG. 2. Stationary mean fieldm vs coupling strengthJ* at dif-
ferent growth ratesd* . The flatness parameter equalsw52 and the
amplitude parametera50.8. If J* exceeds the critical coupling
strengthJ151/3, an unstable phase of the system occurs~marked
by the bold line on theJ* axis!. In the case ofd* 51 another
critical coupling strengthJ2'0.3998 appears; the dashed lin
marks unstable solutions of the self-consistency equation~16!. If
the mean field lies on the upper branch close to the pointF, a slight
growth of J* induces a catastrophic transition of the system to
unstable state.
8-4
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Equation~16! shows that the critical coupling paramet
J2 is given by the system of transcendental equations

d* m512J2 3F2 , ~18!

d* 52J2

d

dm3F2 ,

where the hypergeometric function3F2 is the same as in Eq
~16!. At the critical pointd* 5dc* , whereJ25J1 andm50
holds, from Eqs.~18! the following solution can be obtained

dc* 52J1S d

dm3F2D U
m50

.

From this we can easily obtain an expression for the crit
growth rate parameter

dc* 5
2qAa

12~122q!a
lnU~11Aa!12(122q)Aa

~12Aa!11(122q)AaU . ~19!

It is remarkable that in the case of fixed values ofq the
critical parameterdc* increases monotonically from zero t
infinity if the noise amplitudeaP(0,1) increases. We ca
also consider the solution~19! as a function of the flatnes
parameterw51/2q. The typical forms of the graph ofdc* (q)
are represented in Fig. 4. There is a lower limit for the no
amplitude ac'0.633 01, below whicha<ac ,dc* (q) in-
creases monotonically. Ifa.ac , then for increasing value
of q, the critical growth rate starts from zero, growing
maximum at a certain valueqm of q, anddc* approaches the
value

d̃c5Aa lnU11Aa

12Aa
U

as q→1/2. The parameterqm at which the critical growth
ratedc* is maximized can be given the form

FIG. 3. A plot of the phase diagram in thed* -J* plane ata
50.8, q50.25. The stable phase, unstable phase, and the coe
ence region of two phases are marked byS, U, and SU, respectively
The critical growth rate parameter isdc* '2.6885 and the critical
coupling strength isJ151/3.
05110
l

e

qm5
A12a

2a
SA12

d̃c

ln~12a!
2A12a D . ~20!

As the noise amplitudea.ac increases,qm decreases mono
tonically from 1/2 to zero. In the case of a large amplitu
a'1 one can find from Eqs.~19! and ~20! that dc* (qm)

'2d̃c . It means that in the case ofa.ac the value of the
critical parameterdc* induced by a trichotomous noise can u

to twice exceed the valued̃c of the parameterdc* induced by
a dichotomous noise (q51/2) of the same amplitude. Nota
bly, in the case ofa,ac , the parameterdc* of trichotomous

noise is always less than the corresponding parameterd̃c of a
dichotomous noise.

In Fig. 5 we have plotted the width of the coexisten
region of two phasesJ22J1 as a function of the parameterq.
It can be seen that, ifa.ac , then the functional dependenc
of J22J1 on the parameterq is of a bell-shaped form that is
associated with the behavior ofdc* (q).

In the vicinity of the critical pointd* 'dc* ,d* ,dc* , the
values ofJ2 and the ‘‘order parameter’’m(J2) can be esti-
mated by the following equations:

ist-

FIG. 4. The critical growth ratedc* vs the noise parameterq
P(0,0.5) for some values of the noise amplitude parametera. Note
a bell-shaped extremum ofdc* (q) at a.ac'0.633 01. Ifa,ac ,
thendc* (q) increases monotonically asq increases.

FIG. 5. The width of the phase coexistence regionR5J22J1 vs
noise parameterqP(0,0.5) at three typical cases. The curves~1!–
~3! correspond to the following parameters: (1)d* 50.5,a50.6,b1

51; (2)d* 53,a50.9,b2510; (3)d* 53.8,a50.9,b35100. At
fixed coupling strength,J* .12a, the discontinuous transition
caused by changes of the noise flatness parameterw51/2q can
occur only within the finite intervals ofw:(1)1,w,8.803, (2)1
,w,8.606, (3)1.283,w,4.250.
8-5
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MANKIN, AINSAAR, HALJAS, AND REITER PHYSICAL REVIEW E 65 051108
J2'J11
~dc* 2d* !2

2r
, m~J2!'

~dc* 2d* !

J1r
, ~21!

where

rªF d2

dm2 3F2S 1,
1

2
,2qm;m,m1

1

2
;a D GU

m50

.

For a!1 ~i.e., if the noise amplitude is small!, we can do
with the following approximate equations:

dc* '4qa, r'4dc* .

At large amplitudes, 12a!2q, the parametersdc* andr
can be given asdc* '2(12q)u ln(12a)u, r'dc*

2/J1. Since the
coupling-induced two-phase coexistence region does not
ist in a system without noise, it is a pure colored-noise eff
@see also Eq.~19!#. From Eq.~15! we can find that there is a
coexistence region if the noise correlation timetc satisfies
the conditiontc,dc* /2d. Evidently, if the system is in a
stationary stable phase in the coexistence region, then a
turbation of the noise parameters can turn the system to
unstable phase. It is remarkable that variations of the n
correlation time can induce only abrupt transitions betwe
the stable and unstable states of the system. In cont
variations of the noise amplitude~and the flatness! can in-
duce both discontinuous and continuous transitions.

V. HYSTERESIS

In ecological contexts unstable states of a system
variously be interpreted: extinction of populations, prese
of additional interaction between species that the model
not taken into account, etc. In order to investigate the p
ence of a possible hysteresis induced by a noise we mo
our model so that the unstable state of the system is repl
by a new stable state. We take into account that in case t
is a competition for a common resource, such as food
living space, the growth of any expanding population m
eventually be limited by the shortage of resources. Rely
on Ref.@19#, we introduce an adaptation in the above mo
@Eqs. ~1!–~3!# by means of the dependence of the carry
capacityKi on the numbers of individuals in the population

d

Ki
5g1

eg2

N (
j Þ i

Xj~ t !1Zi~ t !, ~22!

where the adaptation factore.0 is assumed independent
the species, i.e., the populations adapt themselves with
spect to the total number of individuals of all population
The mean-field approximation scheme presented in Sec
can also be applied in this case by replacing the parametg
in Eq. ~9! by the following one:

g* 5g1eg2^X&. ~23!
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The corresponding stationary self-consistency equation i

d* m512
J* 2m

m~J* 2de!1e/2tc
3F2S 1,

1

2
,2qm;m,m

1
1

2
;

am2J* 2

@m~J* 2de!1e/2tc#
2D , ~24!

where the parametersd* ,J* ,a, andm are given by Eqs.~14!
and ~15!. Differently from what is presented in Sec. III, th
stationary states at the conditions relevant in biologyd
.0,J.0,g.0,e.0,a,1, and Xi>0) always exist, i.e.,
there is no unstable state. If noise is absent, the statio
state is monostable and

^X&5
1

2eg
@A~J* 21!214ed1J* 21#.

In Fig. 6 the mean fieldm is shown as a function of the
coupling intensityJ* satisfying the self-consistency equatio
~24! at tc50.5,d51,a50.8,q50.25, ande50.0001. A hys-
teresis for the mean field appears and the discontinuous
sition is doubly unidirectional. There are two critical valu
for the coupling intensityJ̃150.3700 andJ̃250.4014 at
which the abrupt transitions occur. If the adaptation facto
rather small (e is much less than the other parameters ch
acteristic of the system!, the critical parameters can be es
mated as

J̃1'J1 , J̃2'J2 .

Hysteresis can also be present in case any noise pa
eter, a,q, or tc , is chosen as the control parameter. F
example, in Fig. 7 the hysteresis is exposed for the m
field m if the noise correlation timetc is considered as the
control parameter. It can be seen that a jump from a s
with a bigger number of individuals to that with a less

FIG. 6. The mean fieldm vs coupling constantJ* at q
50.25,a50.8,tc50.5, ande51024 with time scalingd51. Solid
and dashed lines are stable and unstable solutions of the
consistency equation~24!, respectively. The system shows hyste
esis — discontinuous transitions appear at the bifurcation poinF
andG.
8-6
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number occurs at smaller correlation times than oppo
jumps. As was mentioned before, hysteresis appears
change of the noise amplitude. In these cases the jum
bigger numbers of individuals occurs at larger amplitud
than the opposite jumps. Therefore a decrease of the n
amplitude~or of the correlation time! can under certain con
ditions cause a catastrophic fall in the size of the populat

VI. CONCLUDING REMARKS

The presence of colored noise has a profound effect o
ecosystem described by Eqs.~1!–~3!, rearranging its param
eter space so that in a certain region the system can be e
in the unstable phase or in the stationary stable one
abrupt~first-order-like! transitions occur. Since the coupling
induced two-phase coexistence region does not exist in
system without noise, it is a pure colored-noise effect. T
results indicate that the effect of noise is not merely
stricted to the shift of the critical value of the interactio
strength, but the whole nature of the transition changes.
tably, the coexistence region exists only at bounded value
the correlation timetc,dc* /2d @see Eq.~19!#. The phenom-
enon is robust enough to survive a modification of the no
as well as the coupling mechanism. Calculations analog
to those given in the Appendix show that in the case o
symmetric zero-mean exponentially correlated noise^Z(t
1t),Z(t)&5s exp(2nt), if the dispersion is small enoug
(s!g2), all the results from Sec. IV are valid. In this ca
a(a!1) must be replaced bys/(2qg2) in the equations of
Sec. IV. For example, the noise can also be a Gaussian
tionary process. Evidently, a choice of a Gaussian noise
plies the possibility of obtaining negative values ofg or the
carrying capacity. Such a case has no biological meaning
as the width of the Gaussian distribution is small enough,
small negative tail does not affect our results, if restricted
the first order ins/g2.

Another interesting example admitting an exact analyti
self-consistency equation is the case where the carrying
pacity Ki fluctuates according toKi /d5(K/d)1Zi @cf. Eq.
~3!#. If Zi means a dichotomous process (q51/2), then all

FIG. 7. Plot of the mean fieldm as a function of the noise
correlation timetc at q50.25,a50.8,J* 50.39 with time scaling
d50.7 ande51024. The solid and dashed lines correspond to
stable and unstable solutions of Eq.~24!, respectively. Hysteresis o
the mean field appears. The arrows show the direction of
change. The states in the dashed middle section lie on the bo
between the basin of attraction of the two alternative stable st
on the upper and lower branches.
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mathematical results of Sec. III and IV are valid, just t

parametersg and a must be replaced byg* 5g̃/(12a* )

and a* 5(g̃a0)2,1 ~where g̃5d/K) in the respective for-
mulas. It is remarkable that, differently from what could

seen in Sec. IV, the rescaled critical coupling constantJ̃1

does not depend on the parameters of the noise and re

the value it has if noise is absent,J̃15Jc5g̃. The region of
the coexistence of two phases is determined by the co

tions g̃,J, J̃2<g̃/(12a* ),tc, d̃c/2d. This means that in
the presence of noise, a symbiotic ecological system
have a stable stationary state also if the coupling param
considerably exceeds the critical value of the coupling c

stantJc5g̃ characteristic of the deterministic case. Notab
in the cases considered in Secs. III and IV the values of
coupling parameter for stationary states are always less
Jc .

In Sec. V we have modified the model by including a te
that mimics the decrease of the carrying capacity caused
the competition of populations for common resources. In t
case there is no unstable state of the system and the m
field is characterized by one or two stable stationary so
tions for every value of the coupling parameterJ* >0.
Moreover, hystereses for the mean field and related disc
tinuous transitions can sometimes be found as function
the noise parameters as well as of the coupling consta
This is because colored noise can induce bistability of
ecosystem.

Our major result is that, in the case of ecological syste
with a symbiotic interaction between the species, rand
interaction with the environment can cause discontinu
transitions in ecosystems, even if the system is monostab
the absence of noise. Such transitions can appear in
ways~both of which may depend on human activities!. First,
abrupt transitions can be caused by changes of control
rameters, for example, the variations of the coupling cons
or the noise correlation time~see Figs. 2 and 7!. Second,
some environmental fluctuations can affect the state direc
for example, by wiping out parts of the populations@4#. If
there are alternative stable states, rather severe fluctua
may shift the system into a basin of attraction of anoth
state~Fig. 7!. Such catastrophies were also noted in differe
ecological models assuming that the deterministic poten
in the absence of noise is multistable@4,6#. We would like to
emphasize that these models are qualitatively different fr
these considered in our work. In the latter the determinis
potential is monostable and bistability is induced by the co
bined effects of multiplicative colored noise and symbio
coupling ~Sec. V!.

The systems considered consist of infinite number of g
bally coupled species. When the number of species is fin
as is true for more realistic ecosystems, the features of
system can be different~see, e.g.,@14#!. Thus, the case of a
finite number of interacting populations remains to be st
ied. It should be considered whether pure colored-no
induced catastrophic shifts can play some role in natural e
systems~or in metapopulations! dominated by a symbiotic
relationship or by cooperation between species~see also

e
er

es
8-7
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Ref. @20#!. Undoubtedly, ultimate verification of these ama
ing phenomena lies with experimentalists—ecologists.
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APPENDIX

Since the self-consistency equation~16! for m yields, in
general, more than one solution for the system and in a
tion the system can have an unstable state that Eq.~16! does
not include, it is essential to ascertain which of the station
states is realized in the course of time and to consider
transitions between stable and unstable states. For this
pose we investigate the behavior ofd^X(t)&/dt in the long
time regime (t→` for the stability region andt→tc for the
instability region, wheretc is the stability-instability transi-
tion time!. For the sake of simplicity we confine ourselves
the case where the noise amplitude is small,a!1.

The solution of Eq.~9! is given by

X~ t !5x0eM (t)F11x0E
t0

t

eM (t* )@g1Z~ t* !#dt* G21

~A1!

with

x05X~ t0!

and

M ~ t !5E
t0

t

@d1J^X~ t* !&#dt* .

Taking into account that

^Z~ t !,Z~ t8!&52qg2a exp~2nut2t8u!

and confining ourselves to the terms proportional toa, we
get

^X~ t !&05x0eM (t)@112qx0
2ag2G~ t !#

3F11x0gE
t0

t

eM (t* )dt* G21

1O~a2!,

where
05110
e
d

i-

y
e

ur-

G~ t !5S 11x0gE
t0

t

eM (t* )dt* D 22E
t0

t

dt8

3E
t0

t

dt* eM (t* )1M (t8)2nut82t* u

and the symbol̂ &0 denotes an average calculated over
realizations of the processZ(t). Proceeding analogousl
from Eq. ~A1! the formulas for both ^X2(t)&0 and
^Z(t)X2(t)&0 can be found.

From Eq.~9! follows

d^X&0

dt
5^X&0$d1J^X&2^X&0@g12qax0g2$x0gG~ t !

2R~ t !%#%1O~a2!, ~A2!

where

R~ t !52e2ntS 11x0gE
t0

t

dt* eM (t* )D 21E
t0

t

dt* eM (t* )1nt* .

In Eq. ~A2! the following long time regime approximatio
can be applied:

R~ t !2x0gG~ t !'
J^X&1d

x0g~n1d1J^X&!
.

After averaging Eq.~A2! over the initial distribution we can
reach in the long time regime the following asymptotic equ
tion:

d^X&
dt

.
g2^X&

n1d1J^X& H J* ~J* 2J1!^X&21
1

g
@~2d1n!J*

2n2dJ1#^X&1
d~n1d!

g2 J , ~A3!

whereJ* 5J/g andJ15122qa.
Following the sign and zeros of the expression in t

braces we can single out the following alternatives.
~i! For J* ,J1 there is just one stationary stable solutio

of Eq. ~A3! — the average size of the species saturates at
solution.

~ii ! For J* .J1, if ^X& is sufficiently large, unlimited
growth of the mean valuêX& occurs.

~iii ! If J* .J25J11(A2qa2Adtc)
2,tcd,2qa or if

J* .J1 ,tcd.2qa, then the system is unstable and the me
value ^X& grows to infinity.

~iv! In the case ofJ1,J* ,J2 andtcd,2qa there occur
two stationary solutions and a solution that grows to infin
in time. The bigger stationary solution is unstable and
smaller one is stable.
8-8
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